On the mixing property and the ergodic principle for nonhomogeneous Markov chains
نویسندگان
چکیده
منابع مشابه
Mixing Times for Uniformly Ergodic Markov Chains
Consider the class of discrete time, general state space Markov chains which satist)' a "'uniform ergodicity under sampling" condition. There are many ways to quantify the notion of "mixing time", i.e., time to approach stationarity from a worst initial state. We prove results asserting equivalence (up to universal constants) of different quantifications of mixing time. This work combines three...
متن کاملMarkov Chains and the Ergodic Theorem
This paper will explore the basics of discrete-time Markov chains used to prove the Ergodic Theorem. Definitions and basic theorems will allow us to prove the Ergodic Theorem without any prior knowledge of Markov chains, although some knowledge about Markov chains will allow the reader better insight about the intuitions behind the provided theorems. Even for those familiar with Markov chains, ...
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملRapidly-mixing Markov Chains
INTRODUCTION Andrei Andreyevich Markov was a Russian mathematician born in 1856. Markov's main interests were in number theory, continued fractions, and approximation theory. He studied under P. Chebyshev and worked in the field of probability theory. Markov pioneered work in the area of stochastic processes by creating a model called a Markov chain—a random walk on a state space. His work has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.11.021